Podstrony
|
[ Pobierz całość w formacie PDF ]
Let f*(x) a" ((i¾ f^(¾ ))Ø or (f*)^(¾ ) = i¾ f^(¾ ). Then f* " L2(R), and " " " " ëø öø = ëø öø dxöø ëø dxöø ëø ìø +" x2lf(x)l2 ÷ø ìø +" ¾ 2lf^(¾ )l2d¾ ÷ø ìø +" x2lf(x)l2 ÷ø ìø +" l(i¾ )f^(¾ )l2d¾ ÷ø íø øø íø øø íø øø íø øø " " " " " " öø = ëø dxöø ëø ìø +" x2lf(x)l2 ÷ø ìø +" l(f*)^(¾ )l2d¾ ÷ø íø øø íø øø " " " " ëø = 2À dxöø ëø dxöø ìø +" x2lf(x)l2 ÷ø ìø +" lf*(x)l2 ÷ø (by Parseval s identity). íø øø íø øø " " Since " " 2 2 îø 1 * * ïø x (x) f(x) + f*(x) f(x) úø = ïø x Re (x) f(x) úø (f )dxùø îø (f )dxùø +" 2 +" ðø ûø ðø ûø " " " " 2 2 îø ùø ôø ôø = ïø Re x f(x) f*(x) dx úø d" ôø x f(x) f*(x) dx ôø +" +" ðø ûø ôø ôø " " " " d" ëø dxöø ëø dxöø ìø +" x2lf(x)l2 ÷ø ìø +" lf*(x)l2 ÷ø íø øø íø øø " " (by the Cauchy-Schwartz inequality). We will show that " " x (x) f(x) + f*(x) f(x) dx (f )dx = +" * +" lf(x)l2 " " from which the result follows, for then " " " " ëø öø = 2À ëø dxöø ëø dxöø ëø dxöø ìø +" x2lf(x)l2 ÷ø ìø +" ¾ 2lf^(¾ )l2d¾ ÷ø ìø +" x2lf(x)l2 ÷ø ìø +" lf*(x)l2 ÷ø íø øø íø øø íø øø íø øø " " " " " 2 îø 1 * e" 2À ïø x (x) f(x) + f*(x) f(x) úø (f )dxùø +" 2 ðø ûø " 18.ÊHeisenbergÕsÊInequality. 61 " " îø ùø2 À ëø " ëø 1 öø = À ïø dxúø dxöø ìø 2 +" lf(x)l2 ûø = 2 +" lf(x)l2 ÷ø ìø +" lf^(¾ )l2d¾ ÷ø 2À ðø íø øø íø øø " " " " " 1 ëø ëø öø . = dxöø ìø 4 +" lf(x)l2 ÷ø ìø +" lf^(¾ )l2d¾ ÷ø íø øø íø øø " " To complete the proof, we assume that f is continuous and piecewise smooth, This assumption can be removed since functions in L1(R) are the uniform limit of such functions. Then from the property of Fourier transforms, f*(x) = f'(x) wherever the derivative exists. Then for any interval [a, b] , b d b lf(b)l2 a lf(a)l2 = +" dx (x lf(x)l2)dx a b = (x f '(x) f(x) + x f(x) f '(x) + lf(x)l2 )dx +" a b b = x (x) f(x) + f*(x) f(x) dx (f )dx + +" * +" lf(x)l2 a a The assumption f " L2(R) implies that b lf(b)l2 ’! 0 as b ’! " and a lf(a)l2 ’! 0 as a ’! " since otherwise lf(x)l > c lxl 1/2 as lxl ’! " , which is not integrable. Taking the limit as b ’! " and a ’! " , " " 0 = x (x) f(x) + f*(x) f(x) dx (f )dx + +" * +" lf(x)l2 " " as required. As for the case of equality in Heisenberg s inequality, this holds if and only if f(x) f*(x) is real and f*(x) = K x f(x) for some complex constant K. That is, f(x) f*(x) = f(x) K x f(x) = x lf(x)l2 K is real. Therefore K is real. The differential equation f'(x) = f (x) = K x f(x) has solutions of the form Kx2
2 f(x) = c e , c any real constant, 18.ÊHeisenbergÕsÊInequality. 62 Kx2
2 and f(x) = c e " L2(R) if and only if K > 0. Therefore equality holds in Heisenberg s 2 inequality only if f(x) = c e kx for constants c " R and k > 0. Kx2
2 Conversely, let f(x) = e for constant K > 0. Then " " " " ëø öø = 2À ëø dxöø ëø dxöø ëø dxöø ìø +" x2lf(x)l2 ÷ø ìø +" ¾ 2lf^(¾ )l2d¾ ÷ø ìø +" x2lf(x)l2 ÷ø ìø +" lf*(x)l2 ÷ø íø øø íø øø íø øø íø øø " " " " " " ëø = 2À dxöø ëø dxöø ìø +" x2lf(x)l2 ÷ø ìø +" lK x f(x)l2 ÷ø íø øø íø øø " " " 2 = 2À K2 ëø dxöø ìø +" x2lf(x)l2 ÷ø íø øø " " Kx2 2 = 2À K2 ëø ìø ÷ø +" x2e dxöø íø øø " " 2 îø ùø x Kx2 ( 2Kxe ) = 2À K2 ïø dxúø +" ëø 2Köø íø øø ðø ûø " " 2 îø ùø x Kx2 ( 2Kxe ) = 2À K2 ïø dxúø +" ëø 2Köø íø øø ðø ûø " " 2 îø x d Kx2 ( )ùø = 2À K2 ïø dxúø +" ëø 2Köø dx e íø øø ðø ûø " " 2 2 îø ùø 1 = 2À K2 ïø dxúø +" ëø 2Köø e Kx ûø (integration by parts) íø øø ðø " " À îø Kx2 2 ùø = 2 ïø +" e dxúø ðø ûø " " À îø t2 2 2 ùø À = ïø 2K +" e dtúø = 2K . ðø ûø " Whereas, " " " " 1 ëø öø = 1 ëø ëø dxöø ëø dxöø 2À dxöø ìø 4 +" lf(x)l2 ÷ø ìø +" lf^(¾ )l2d¾ ÷ø 4 +" lf(x)l2 ÷ø ìø +" lf(x)l2 ÷ø íø øø íø øø íøìø " øø íø øø " " " " 2 À = ëø dxöø ìø 2 +" lf(x)l2 ÷ø íø øø " 18.ÊHeisenbergÕsÊInequality. 63 " À îø Kx2 2 ùø = 2 ïø +" e dxúø ðø ûø " and equality holds. The case of a `" 0, ± `" 0, follows by observing that F(x) = e i± x f(x + a) satisfies the same hypotheses as f(x) and " f = " F and " f^= " F^ for any a `" 0, ± `" 0. a 0 ± 0 As a consequence of the inequality f f^ 1 (" )(" ± )e" , we see that it is impossible for a 4 both " f and " f^ to be simultaneously small. That is, if one of " f or " f^ is very small a ± a ± then the other must be large.
[ Pobierz całość w formacie PDF ]
zanotowane.pldoc.pisz.plpdf.pisz.plkskarol.keep.pl
|